「対比」の評価の拡張:最大対比法 対比較によるMEDの「検定」の問題点が指摘されていた1990年代中~後半、最大対比法という方法論が提唱され始めました。 対比の概念自体は当時も既存のものでしたが,複数の対比を同時に検討するのが新しい点。それに伴う多重性への対応が問題でしたが,データのリサンプリングにより同時分布をシミュレートするという,最も単純な,しかしコンピュータの性能を最大限活かしたアプローチで見事解決。背景にはSASのMULTTESTプロシジャのリリースがあったようですが,当時私はすごく感動を覚えていたように思います。 最大対比法の特徴を改めて考えると, Dunnett法等の多重比較手法も網羅している 検定結果は「用量間で応答分布に差がない」という帰無仮説を棄却できるかどうかの判断根拠 あとは当てはまりの良さそうな対比を選び,それに基づき臨床用量候補を選び出すだけ といった所でしょうか。かなりモザイク模様ではありますがDR推定問題も考慮している点で実用的な手法だと思います。 Rによる最大対比法 今回の解析は全てRを用いたものです。Rでもリサンプリング法を実装するmulttestパッケージがかつては存在しましたが,今はリタイアしているらしい。今はmultcompという別のパッケージで実装するよりなさそうですが,このパッケージではリサンプリングではなく理論的な多変量分布を用いて複数対比の評価を行います。 biomデータの解析結果 結果は以下の通り。 比較 対比 調整P値 0.05でプラトー (-4,1,1,1,1) 0.017 0.2でプラトー (-7,-2,3,3,3) 0.0019 0.6でプラトー (-9,-4,1,6,6) 0.0013 線形 (-2,-1,0,1,2) 0.0014 1で降下 (-8,-3,2,7,2) 0.0022 対比の設定については議論の余地があるものの,この結果から分かることは, P値は全て2.5%より小さいので,有意水準を片側2.5%とすれば,プラセボに比して実薬が有効であろうことは推察できる。 もっともP値が小さいのは「0.6でプラトー」なので,この結果から選ぶ臨床用量候補としては0.6と1ということになる ただし「線形」対比もP値としては近いので,用量1...
コメント
コメントを投稿