スキップしてメイン コンテンツに移動

用量探索試験と私 #6:ゲートキーピング法

ゲートキーピング法

前回触れた「ゲートキーピング法」の補足です。

2000年代前半,多用量群だけでなく「多変量」「多時点」「多集団」にも適用可能な汎用的多重比較手法のニーズが高まってきました。

前回のbiomデータの解析では,以下の2段階で検定を実行しました。
  1. プラセボ群を含む全ての用量群における単調増加性の存在をJonckheere検定で確認する。
  2. 1で単調増加性が認められた場合に限り,プラセボ群と用量群の比較を高用量からのステップダウン法でWilcoxon検定により実施する。
これをゲートキーピング法の言葉で表現すると,
  1. 「プラセボ群を含む全ての用量群において単調増加性はなく,分布は全て等しい」という帰無仮説族F1(実際は1つだけの仮説)と「プラセボ群と個々の用量群で分布は等しい」という4つ(4用量分)の仮説を含む帰無仮説族F2を設定する。さらに,F2に含まれるプラセボ群と用量1,0.6,0.2,0.05の分布に関する帰無仮説をそれぞれF21,F22,F23,F24とする。
  2. F1とF2は直列ゲートキーピング法で検定する。つまり,F1はF2の検定のためのゲートキーパーであり,F1が棄却されない限りF2を検定することはない。
  3. さらにF21~F24も直列ゲートキーピング法で検定し,F21はF22の,F22はF23の,F23はF24のゲートキーパーである。各ゲートキーパーの帰無仮説が棄却されない限り,その後に続く帰無仮説が検定されることはない。
となるでしょうか。

もし,プラセボ群との対比較がDunnett法等ステップダウン法でない同時比較だった場合,3の手順は以下のようになります。

「F21~F24を並列ゲートキーピング法で検定する。F21~F24の各帰無仮説の棄却は,自身が棄却されさえすればよいが,適切に多重性を調整する。」

ゲートキーピング法は汎用的な多重比較の考え方なので,「複数変数」「複数時点」「複数サブグループ」等,色々な状況で適用可能です。

仮説族を「直列に配線」するか「並列に配線」するかは,その仮説族の重要性に依存します。上記手順は,当時の私が「薬剤の単調増加性」を重視した結果です。

その頃私は:挫折?と幸運

さて、勤め先の合併に伴い東京に舞い戻った私ですが,当時開講された社会人向け医薬統計大学院コースに入ることを発作的に決めました。

発作的?そうなんです。それまでの私だと「学位なんてむり」とか言って知らんぷりしていたのですが,なぜかこの時はブームに乗って手を挙げました。

実際無理だった、というか学位は取得できなかったのですが、そのコースで今の妻と再会することになりました。色々あって交際スタート。

ただし,仕事の方はちょっと荒れ気味でしたね。割にリベラルだった会社(私はこちら側)と「上意下達が全て」のお役所会社の合併だったので,そもそも話が合うはずがない。その歪みが色々と出始めた時期でした。

今にして思うと,ビジネス成功のためには出身会社うんぬんよりも単純に「目標達成が全て」と割り切って,組織や人事を大胆に組み直し,出身会社の壁を破る対応が必要だったと思います。

「今の延長線上で何とかする・何とかなると思い込む」のは日本人のカルチャーなのだろうか?









コメント

このブログの人気の投稿

研究ログ:ノンパラメトリックANCOVA

ノンパラメトリックANCOVAとは? 確率的順序で表される治療効果に対して共変量の平均値の差による回帰モデルを仮定して解析する手法。その回帰モデルでは,「共変量の平均値の差は0である」という制限を課した上で治療効果が推定される。この仮定はデータがランダム化臨床試験から得られたものという前提条件に由来する。 ノンパラメトリックANCOVAの利点 このモデルでは,確率的順序の推定値と共変量の標本平均の群間差を結合したベクトルに対し,「共変量の平均値の差が0」という射影行列を用いてモデル化する。このモデルさえ仮定すれば,確率的順序は重み付き最小二乗法を用いて推定される。このモデルに必要なのはデータがランダム化臨床試験から得られたという事実のみである。 ノンパラメトリックANCOVAの問題点 モデルは応答変数・共変量共に「平均値の差」を扱うものなので,個々の被験者の共変量に対する個々の被験者の応答の予測はできない。 また,この手法は層間・サブグループ間で治療効果の交互作用の存在を想定しておらず、またその評価も検討されていない。特に連続型共変量の場合,「平均値の差を扱う」モデルの性質上,「共変量の値(差ではない)によって治療効果が異なる」という説明が難しい 。 理論的側面としては,検定・信頼区間はWald型なので,データの状況次第(サンプルサイズが小さい,確率的順序が0または1に近い)では信頼区間の限界値が0または1を超える場合がある。 参考文献  Kawaguchi A, Koch G, Wang X (2011), Stratified Multivariate Mann-Whitney Estimators for the Comparison of Two Treatments with Randomization Based Covariance Adjustment. Statistics in Biopharmaceutical Research, 3(2), 217-231

用量探索試験と私 #7:いよいよ登場MCP-Mod

MCP-Mod概略 いよいよ本題です。 MCP-Modの原著は2005年公開。その名の通り「多重比較(MCP)」と「用量反応関係のモデル化(Mod)」の2部構成で, あらかじめ代表的な用量反応関係モデル候補を決めておく 個々のモデルにいくつかの初期値を与え,各モデルにフィットするような用量群の平均パラメータについての対比を決める 2で決めた対比を,多重性を調整して同時に検定する 3で有意差のあった対比に対応する用量反応関係モデルの中で当てはまりが最もよい(AICが小さい)ものを用量反応関係モデルに採用する という手順になっています。 biomデータに適用 早速実演ですが,話を簡単にするために,用量反応関係モデル候補は以下の3つにしました。 線形モデル(単調増加) Emaxモデル(ある用量でプラトー) 2次関数(Downturn) 対比検定 (片側)検定結果は以下の通り 線形モデル:p=0.0034 Emaxモデル:p≺0.0001 2次関数:p=1.0000 従って,2次関数モデルはここで脱落し,線形モデルとEmaxモデルの選択になります。 AICによる選択 AICは以下の通り 線形モデル:7.5549 Emaxモデル:6.2981 従って,biomデータが 上記3つのモデル候補の中で もっともよく当てはまるのはEmaxモデルとなります。 グラフにすると… このグラフを見て臨床用量候補を決めろと言われれば… Emax曲線が見た目プラトーになっているのは用量0.4以降 用量1でのEmax曲線の95%信頼区間幅が用量0.6よりやや広いのが気になる 臨床用量候補には0.6を選ぶのが無難 結局これまでと一緒か…。  その頃私は:ざわざわ… 学位取得はうまく行かない一方で今の妻との交際は順調,2007年に結婚。こんな私でも結婚できるんですね~。さらに,その翌年の元日には長男誕生。 プライベートはまさしく順調という感じに進んだ時期でしたが,仕事はかなり荒れ気味に。人に仕事を振れない,「人をリードする仕事」があることを知らない,といった点は私の問題でしたね。 でもそれはそれで学ぶことの多かった時期でもあり,私にとってはやはり必要な時期だったのでしょう。 ただし会...

用量探索試験と私 #4:最大対比法

「対比」の評価の拡張:最大対比法 対比較によるMEDの「検定」の問題点が指摘されていた1990年代中~後半、最大対比法という方法論が提唱され始めました。 対比の概念自体は当時も既存のものでしたが,複数の対比を同時に検討するのが新しい点。それに伴う多重性への対応が問題でしたが,データのリサンプリングにより同時分布をシミュレートするという,最も単純な,しかしコンピュータの性能を最大限活かしたアプローチで見事解決。背景にはSASのMULTTESTプロシジャのリリースがあったようですが,当時私はすごく感動を覚えていたように思います。 最大対比法の特徴を改めて考えると, Dunnett法等の多重比較手法も網羅している 検定結果は「用量間で応答分布に差がない」という帰無仮説を棄却できるかどうかの判断根拠 あとは当てはまりの良さそうな対比を選び,それに基づき臨床用量候補を選び出すだけ といった所でしょうか。かなりモザイク模様ではありますがDR推定問題も考慮している点で実用的な手法だと思います。 Rによる最大対比法 今回の解析は全てRを用いたものです。Rでもリサンプリング法を実装するmulttestパッケージがかつては存在しましたが,今はリタイアしているらしい。今はmultcompという別のパッケージで実装するよりなさそうですが,このパッケージではリサンプリングではなく理論的な多変量分布を用いて複数対比の評価を行います。 biomデータの解析結果 結果は以下の通り。 比較 対比 調整P値 0.05でプラトー (-4,1,1,1,1) 0.017 0.2でプラトー (-7,-2,3,3,3) 0.0019 0.6でプラトー (-9,-4,1,6,6) 0.0013 線形 (-2,-1,0,1,2) 0.0014 1で降下 (-8,-3,2,7,2) 0.0022 対比の設定については議論の余地があるものの,この結果から分かることは, P値は全て2.5%より小さいので,有意水準を片側2.5%とすれば,プラセボに比して実薬が有効であろうことは推察できる。 もっともP値が小さいのは「0.6でプラトー」なので,この結果から選ぶ臨床用量候補としては0.6と1ということになる ただし「線形」対比もP値としては近いので,用量1...