スキップしてメイン コンテンツに移動

第91期ヒューリック杯棋聖戦 第1局観戦記?:意表の相矢倉

いよいよ歴史的な五番勝負が始まりました。

デビュー直後の29連勝で周囲の期待を否が応でも集めつつ、それでも結果を出し続けてきた17歳の青年・藤井七段が、史上最年少タイトル奪取をかけて棋聖戦の番勝負に躍り出ました。
待ち受けるは現在三冠の渡辺棋聖。現時点では最強の棋士の一人で、藤井七段との対決は大きな注目を集めます。二人は朝日杯でも対戦し、そのときは藤井七段が勝ちましたが、今度はタイトル戦なので、持ち時間も長く、また「1回勝てば終わり」ではないので、5局全体でどういう勝負になるかがポイントです。
第1局は振り駒で先後を決めますが、結果は藤井七段の先手。棋聖戦は五番勝負なので最小でも3局は指すことになります。最初の先手番、藤井七段の作戦は何か?
初手から7六歩・8四歩・6八銀・3四歩・7七銀まで。

藤井七段の作戦は矢倉でした。「矢倉は先手番の利を活かしやすい戦型」という考えのようですが、五番勝負を視野に入れて角換わりは温存した意味もあるのでしょうか?
これに対し渡辺棋聖は3四歩の一手に6分使っており、意表を突かれたようです。それまでの藤井7段の対局を見ていれば角換わりの比率が高いのははっきりしており、渡辺棋聖もそれを中心に準備していた可能性が高いです。対局前の準備には抜かりのない渡辺棋聖なので、全く無警戒ということではなさそうですが、事前のプランを早くも書き換えることになったのかもしれません。
なお現代は5手目は7七銀と上がるのが矢倉の駒組の主流で、ここで6六歩は6筋を争点に急戦を仕掛けられると危険なようです。

先手は2六歩~2五歩を早めにきめて後手の急戦を警戒しました。それでも後手は急戦策で先攻を目指す指し方もありますが、本局ではじっくりと付いて行く方針を採り、相矢倉模様に進みました。


コメント

このブログの人気の投稿

研究ログ:ノンパラメトリックANCOVA

ノンパラメトリックANCOVAとは? 確率的順序で表される治療効果に対して共変量の平均値の差による回帰モデルを仮定して解析する手法。その回帰モデルでは,「共変量の平均値の差は0である」という制限を課した上で治療効果が推定される。この仮定はデータがランダム化臨床試験から得られたものという前提条件に由来する。 ノンパラメトリックANCOVAの利点 このモデルでは,確率的順序の推定値と共変量の標本平均の群間差を結合したベクトルに対し,「共変量の平均値の差が0」という射影行列を用いてモデル化する。このモデルさえ仮定すれば,確率的順序は重み付き最小二乗法を用いて推定される。このモデルに必要なのはデータがランダム化臨床試験から得られたという事実のみである。 ノンパラメトリックANCOVAの問題点 モデルは応答変数・共変量共に「平均値の差」を扱うものなので,個々の被験者の共変量に対する個々の被験者の応答の予測はできない。 また,この手法は層間・サブグループ間で治療効果の交互作用の存在を想定しておらず、またその評価も検討されていない。特に連続型共変量の場合,「平均値の差を扱う」モデルの性質上,「共変量の値(差ではない)によって治療効果が異なる」という説明が難しい 。 理論的側面としては,検定・信頼区間はWald型なので,データの状況次第(サンプルサイズが小さい,確率的順序が0または1に近い)では信頼区間の限界値が0または1を超える場合がある。 参考文献  Kawaguchi A, Koch G, Wang X (2011), Stratified Multivariate Mann-Whitney Estimators for the Comparison of Two Treatments with Randomization Based Covariance Adjustment. Statistics in Biopharmaceutical Research, 3(2), 217-231

用量探索試験と私 #7:いよいよ登場MCP-Mod

MCP-Mod概略 いよいよ本題です。 MCP-Modの原著は2005年公開。その名の通り「多重比較(MCP)」と「用量反応関係のモデル化(Mod)」の2部構成で, あらかじめ代表的な用量反応関係モデル候補を決めておく 個々のモデルにいくつかの初期値を与え,各モデルにフィットするような用量群の平均パラメータについての対比を決める 2で決めた対比を,多重性を調整して同時に検定する 3で有意差のあった対比に対応する用量反応関係モデルの中で当てはまりが最もよい(AICが小さい)ものを用量反応関係モデルに採用する という手順になっています。 biomデータに適用 早速実演ですが,話を簡単にするために,用量反応関係モデル候補は以下の3つにしました。 線形モデル(単調増加) Emaxモデル(ある用量でプラトー) 2次関数(Downturn) 対比検定 (片側)検定結果は以下の通り 線形モデル:p=0.0034 Emaxモデル:p≺0.0001 2次関数:p=1.0000 従って,2次関数モデルはここで脱落し,線形モデルとEmaxモデルの選択になります。 AICによる選択 AICは以下の通り 線形モデル:7.5549 Emaxモデル:6.2981 従って,biomデータが 上記3つのモデル候補の中で もっともよく当てはまるのはEmaxモデルとなります。 グラフにすると… このグラフを見て臨床用量候補を決めろと言われれば… Emax曲線が見た目プラトーになっているのは用量0.4以降 用量1でのEmax曲線の95%信頼区間幅が用量0.6よりやや広いのが気になる 臨床用量候補には0.6を選ぶのが無難 結局これまでと一緒か…。  その頃私は:ざわざわ… 学位取得はうまく行かない一方で今の妻との交際は順調,2007年に結婚。こんな私でも結婚できるんですね~。さらに,その翌年の元日には長男誕生。 プライベートはまさしく順調という感じに進んだ時期でしたが,仕事はかなり荒れ気味に。人に仕事を振れない,「人をリードする仕事」があることを知らない,といった点は私の問題でしたね。 でもそれはそれで学ぶことの多かった時期でもあり,私にとってはやはり必要な時期だったのでしょう。 ただし会...

用量探索試験と私 #4:最大対比法

「対比」の評価の拡張:最大対比法 対比較によるMEDの「検定」の問題点が指摘されていた1990年代中~後半、最大対比法という方法論が提唱され始めました。 対比の概念自体は当時も既存のものでしたが,複数の対比を同時に検討するのが新しい点。それに伴う多重性への対応が問題でしたが,データのリサンプリングにより同時分布をシミュレートするという,最も単純な,しかしコンピュータの性能を最大限活かしたアプローチで見事解決。背景にはSASのMULTTESTプロシジャのリリースがあったようですが,当時私はすごく感動を覚えていたように思います。 最大対比法の特徴を改めて考えると, Dunnett法等の多重比較手法も網羅している 検定結果は「用量間で応答分布に差がない」という帰無仮説を棄却できるかどうかの判断根拠 あとは当てはまりの良さそうな対比を選び,それに基づき臨床用量候補を選び出すだけ といった所でしょうか。かなりモザイク模様ではありますがDR推定問題も考慮している点で実用的な手法だと思います。 Rによる最大対比法 今回の解析は全てRを用いたものです。Rでもリサンプリング法を実装するmulttestパッケージがかつては存在しましたが,今はリタイアしているらしい。今はmultcompという別のパッケージで実装するよりなさそうですが,このパッケージではリサンプリングではなく理論的な多変量分布を用いて複数対比の評価を行います。 biomデータの解析結果 結果は以下の通り。 比較 対比 調整P値 0.05でプラトー (-4,1,1,1,1) 0.017 0.2でプラトー (-7,-2,3,3,3) 0.0019 0.6でプラトー (-9,-4,1,6,6) 0.0013 線形 (-2,-1,0,1,2) 0.0014 1で降下 (-8,-3,2,7,2) 0.0022 対比の設定については議論の余地があるものの,この結果から分かることは, P値は全て2.5%より小さいので,有意水準を片側2.5%とすれば,プラセボに比して実薬が有効であろうことは推察できる。 もっともP値が小さいのは「0.6でプラトー」なので,この結果から選ぶ臨床用量候補としては0.6と1ということになる ただし「線形」対比もP値としては近いので,用量1...